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Wave turbulence in rapidly rotating flows
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An asymptotic quasi-normal Markovian (AQNM) model is developed in the limit of
small Rossby number Ro and high Reynolds number, i.e. for rapidly rotating turbulent
flow. Based on the ‘slow’ amplitudes of inertial waves, the kinetic equations are close
to those that would be derived from Eulerian wave-turbulence theory. However, for
their derivation we start from an EDQNM statistical closure model in which the
velocity field is expanded in terms of the eigenmodes of the linear wave regime.
Unlike most wave-turbulence studies, our model accounts for the detailed anisotropy
as the angular dependence in Fourier space. Nonlinear equations at small Rossby
number are derived for the set e, Z, h – energy, polarization anisotropy, helicity – of
spectral quantities which characterize second-order two-point statistics in anisotropic
turbulence, and which generate every quadratic moment of inertial wave amplitudes.
In the simplest symmetry consistent with the background equations, i.e. axisymmetry
without mirror symmetry, e, Z and h depend on both the wavevector modulus k

and its orientation θ to the rotation axis. We put the emphasis on obtaining accurate
numerical simulations of a generalized Lin equation for the angular-dependent energy
spectrum e(k, θ, t), in which the energy transfer reduces to integrals over surfaces
given by the triadic resonant conditions of inertial waves. Starting from a pure three-
dimensional isotropic state in which e depends only on k and Z =h = 0, the spectrum
develops an inertial range in the usual fashion as well as angular anisotropy. After
the development phase, we observe the following features:

(a) A k−3 power law for the spherically averaged energy spectrum. However, this is
the average of power laws whose exponents vary with the direction of the wavevector
from k−2 for wavevectors near the plane perpendicular to the rotation axis, to k−4 for
parallel wavevectors.

(b) The spectral evolution is self-similar. This excludes the possibility of a purely
two-dimensional large-time limit.

(c) The energy density is very large near the perpendicular wavevector plane, but
this singularity is integrable. As a result, the total energy has contributions from all
directions and is not dominated by this singular contribution.

(d) The kinetic energy decays as t−0.8, an exponent which is about half that one
without rotation.

1. Introduction
Rotation of the reference frame is an important factor in some mechanisms of

flow instability, and the study of rotating flows is interesting from the point of view

† Author to whom correspondence should be addressed: claude.cambon@ec-lyon.fr
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of turbulence modelling in fields as diverse as engineering (e.g. turbomachinery and
reciprocating engines with swirl and tumble), geophysics and astrophysics. Effects
of mean curvature or of advection by a large eddy can be tackled using similar
approaches.

Even where excluding altogether mean velocity and temperature gradients in the
rotating frame of reference, the role of the Coriolis forces is still subtle and difficult
to model, since the corresponding linear dynamics is made up of oscillating motions,
from the presence of neutral dispersive waves. In contrast with shear flows, there is no
direct production of energy by linear effects, and the alteration of the distribution of
energy is mainly controlled by nonlinear interactions, such as resonantly interacting
waves for instance. Given the complexity of this general problem, we restrict our
study to the case of homogeneous turbulence, assuming unbounded flows.

From several experimental, theoretical and numerical studies, in which rotation
is suddenly applied to decaying homogeneous turbulence, some generally accepted
statements are summarized as follows (Bardina, Ferziger & Rogallo 1985; Cambon
& Jacquin 1989; Jacquin et al. 1990; Cambon, Jacquin & Lubrano 1992; Cambon,
Mansour & Godeferd 1997, referred to herein as CMG).†

(i) Rotation inhibits the energy cascade, so that the dissipation rate is reduced.
(ii) The initial three-dimensional isotropy is broken through nonlinear interactions

modified by rotation, so that anisotropy develops. This anisotropy may be
characterized for instance by the angular distribution of energy in spectral space.

(iii) If turbulence is initially anisotropic, the ‘rapid’ effects of rotation are short-
time-scale linear dynamics which may be tackled as in rapid distortion theory. They
conserve the directional anisotropy and damp polarization anisotropy, resulting in
a spectacular change of their relative contributions to the Reynolds stress tensor
anisotropy.
Although the energy density associated with the plane of wavevectors perpendicular
to the rotation axis can become very large due to the angular transfer, this does not
necessarily mean that the flow approaches a two-dimensional state, in the sense that
the overall energy is dominated by wavevectors near the plane. A careful application
of the Taylor–Proudman theorem only shows that the ‘slow manifold’ is the two-
dimensional manifold at small Rossby number. But it does not imply the transition
from three-dimensional to two-dimensional turbulence, which is a nonlinear transfer
mechanism of energy from all the modes towards the two-dimensional ones; in other
words from ‘rapid’ to ‘slow’ ones. Two-dimensionalization can be predicted using the
Proudman theorem under two conditions: small nonlinearity and slow motion. The
first condition is fulfilled at small Rossby number but not necessarily the second. In
physical space, the slow, two-dimensional, manifold is the vertically averaged velocity
field, such that ∂/∂z = 0, whereas in Fourier space it is the wave plane normal to
the rotation axis. Results illustrating the mathematical subtleties arising from rapid
rotation and dependence on the type of initial conditions can be found in Babin,
Mahalov & Nicolaenko (1997, 1999, 2001).

Two-point statistical closure (TPC) models have been extensively exploited to
predict the nonlinear interactions, with satisfactory quantitative comparisons with
direct numerical simulations (DNS) (CMG; Godeferd & Cambon 1994; Godeferd &
Staquet 2003). The mathematical formalism used in these previous studies has shown
that it is fruitful to expand the fluctuating velocity field using the eigenmodes of

† Other recent DNS and LES studies are discussed in § 7.
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the linear operator associated with the waves, as well as for analysing the nonlinear
interactions in terms thereof. Similar eigenmodes decompositions (helical modes)
were used by Cambon & Jacquin (1989), Waleffe (1993), Smith & Waleffe (1999)
and Morinishi, Nakabayshi & Ren (2001a). Anisotropic eddy-damped quasi-normal
Markovian (EDQNM), models in terms of helical modes will therefore be discussed
to some extent in § 2.

Regarding wave-turbulence (WT) theory which has been studied for a long time
(see e.g. Benney & Saffman 1966), recent mathematical developments have renewed
interest in flows which consist of superimposed dispersive waves, in which nonlinear
interactions drive the long-time behaviour (Caillol & Zeitlin 2000; Lvov & Tabak
2001; Galtier 2003; Galtier et al. 2000). The link between the velocity u of a wave,
given its wavevector k, and its amplitude a can be established as

u(x, t) = a(t) exp[i(k · x − σ t)] (1.1)

provided the analytical dispersion law σ = ±σk is known (Greenspan 1968). The
nonlinear equations obtained from WT and TPC for the averaged amplitudes appear
to be very similar, as briefly discussed next.

The statistical homogeneity and quasi-normal assumptions used in TPC have
counterparts in WT, obtained by assuming a priori random phases for the wave field.†
The corresponding isotropic version of the quasi-normal assumption is discussed in
Staquet & Sommeria (2002). Moreover, isotropic dispersion laws such that σk = |k|α
in (1.1) are almost exclusively treated in WT for deriving Kolmogorov spectra,
with the key hypothesis of constant isotropic energy fluxes across different scales
associated with a wavenumber |k| (Zakharov, Lvov & Falkovich 1992). This contrasts
with geophysical flows, in which dispersion laws are anisotropic: σk = βkx/k2 in the
case of Rossby waves, and σk = 2Ωk‖/k for inertial waves σk = Nk⊥/k for internal
gravity waves; kx , k‖ and k⊥ are the wavevector components respectively in the zonal
direction and the directions parallel and perpendicular to the rotation/gravity axes.
In the latter two three-dimensional cases, anisotropy manifests itself in the conical
shape of iso-phase surfaces in experiments with localized forcing. Vertical plane cuts
of these surfaces yield a ‘St-Andrew cross’ pattern, as observed in the experiments by
McEwan (1970), Mowbray & Rarity (1967), and numerically reproduced by Godeferd
& Lollini (1999). Nonlinear interactions between waves also reflect anisotropy in the
angular-dependent energy drain.

When considering Eulerian correlations, TPC and WT theories share a wide
common background, seldom commented on in the literature. Both WT and
homogeneous TPC provide equations for the slow evolution of the wave mean
spectral energy densities. The energy transfer terms are cubic in terms of the wave
amplitude, from triadic interactions. In WT only are fourth-order transfer terms
considered, from quartet interactions, when triple resonance is explicitly prevented by
the dispersion law itself, or by geometrical constraints. This occurs for instance in
shallow-water waves. When triple resonances exist, as in rotating, stably stratified and
MHD turbulence (Caillol & Zeitlin 2000; Galtier et al. 2000), WT kinetic equations
have the same structure as their counterpart in anisotropic TPC. Hence, WT and
TPC have a common limit at very small interaction parameter, e.g. Rossby number
Ro, Froude number Fr , and magnetic Reynolds number in MHD. We shall show

† The random phase approximation is commonly used by physicists. On the other hand, a
mathematical justification for the quasi-normal relationship can be established in the weakly
nonlinear limit of wave turbulence, following Benney & Newell (1969).
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that the precise form of the eddy damping parameter, which remains the heuristic
correction to quasi-normal transfer in EDQNM, is unimportant in this limit. Its
only role is to regularize the resonance operators. Beyond the weak nonlinearity
assumption, the eddy damping, or more generally the nonlinear contribution to
Kraichnan’s response function (Kraichnan 1958), can regain some importance for
moderate interaction parameters, in allowing extrapolation from WT through TPC
towards a larger domain, until the case of strong interactions is reached (e.g. pure
isotropic turbulence without external or wave effects, for which classic multi-point
closure models work satisfactorily).

The paper is organized as follows. A survey of previous EDQNM models based on
the helical mode decomposition is given in § 2, with their link to a rapid–slow analysis.
Kinetic equations in the asymptotic limit of small Rossby number are derived for e,
Z, h in § 3. The numerical method is presented in § 4, numerical results are given in § 5,
with recapitulation, discussion and perspectives in § 6. A conclusion is proposed in § 7.
Tensorial details and tedious algebra are reported in Appendices A to D. Appendix E
provides details of the numerical procedure.

2. EDQNM in terms of the eigenmodes of inertial wave motion
2.1. The helical mode decomposition

Rotating turbulence can be related to studies of incompressible homogeneous
turbulence in the presence of a mean flow with space-uniform velocity gradients
(Craya 1958; Cambon & Scott 1999), provided a pure antisymmetric form εikjΩk

is chosen, with Ω the angular velocity. It is nevertheless simpler to work with a
coordinate system and velocity vectors in the rotating frame. In this non-inertial
frame, rotation induces inertial centrifugal and Coriolis forces. Since the former can
be incorporated in the pressure term, only the latter has to be taken into account in
the Navier–Stokes equations in the rotating frame,

(∂t + u · ∇) u + 2Ωn × u + ∇p − ν∇2u = 0, (2.1)

∇ · u = 0, (2.2)

for the fluctuating velocity u and the pressure p divided by density. The unit vector n
denotes the direction aligned with the angular velocity of the rotating frame Ω = Ωn.
Without loss of generality the fixed frame of reference is chosen such that ni = δi3.
Therefore u3 is the axial velocity component.

In the inviscid linear regime, equation (2.1) becomes

∂u
∂t

+ 2Ω × u + ∇p = 0. (2.3)

Since the Coriolis force is not divergence-free, the pressure term makes a non-trivial
contribution to maintain the incompressibility constraint (2.2). The velocity can be
eliminated between the latter equation and the Poisson equation for the pressure, for
which a closed form is found:

∂2
t (∇2p) + 4Ω2∇2

‖p = 0. (2.4)

The reduced Laplacian operator along the axis of rotation is ∇2
‖. Although the

primitive Poisson equation ∇2p = f is parabolic, equation (2.4) is hyperbolic and
admits propagating waves solutions. Interesting properties of these inertial waves
are illustrated by cross-shaped visualizations in the experiment by McEwan (1970).



Wave turbulence in rapidly rotating flows 87

Seeking plane-wave solutions of (2.4) such that p ∝ ei(k·x−σ t), one finds the dispersion
law of inertial waves

σ = ±σk, σk = 2Ω
k‖

k
= 2Ω cos θ, (2.5)

where θ is the angle between k and the rotation vector Ω . Without pressure, only
the horizontal part of the flow is affected by circular periodic motion at constant
frequency 2Ω , but propagating waves cannot occur. Hence the fluctuating pressure
is responsible both for anisotropic dispersivity and for horizontal–vertical coupling,
coming from the divergence-free condition.

An equation similar to (2.4) is found for the vertical velocity component, and
more generally for both the poloidal and toroidal potentials, detailed in Appendix A.
Without local forcing and boundary conditions, the linear problem can be nicely
recast in Fourier space as

∂ûi

∂t
+ 2ΩPinεn3j ûj = 0 (2.6)

for the velocity Fourier coefficient û(k, t). The projection tensor is Pin = δin − kikn/k2,
δin is the Kronecker tensor, and εijk the alternating tensor. In the turbulence
community, (2.6) is known as the rapid distortion theory equation (RDT, as a
reminder of the rapid–slow time scale separation implied when linearizing).

Given the incompressibility constraint û · k = 0, it is easier to project the equation
in the plane orthogonal to k, using the frame (e(1), e(2)) (see the definition (A 3) of
these vectors in Appendix A). The linear solution consists of a rotation of the initial
Fourier component û(k, 0) about the k-axis by an angle (2Ωk‖/k)t = σkt . A tractable
diagonal form of the corresponding Green’s function is found in terms of the two
complex eigenvectors N = e(2) − ie(1) and N∗ = N(−k) = e(2) + ie(1) in the plane normal
to k, namely

GRDT
ij (k, t, t ′) =

1

2

∑
s=±1

Ni(sk)Nj (−sk)eisσk (t−t ′) (2.7)

which generates the linear solutions

ûi(k, t) = GRDT
ij (k, t, t ′)ûj (k, t ′).

These vectors have been used by different authors for two decades (Cambon & Jacquin
1989), and are called here helical modes after Waleffe (1993). N and N∗ prove useful
in the pure rotation context since they provide a diagonal decomposition, for they are
the eigenmodes of the curl operator, and therefore form a complete basis on which
to project the Navier–Stokes equations. The resulting equations appear to be more
tractable for discussing both linear and nonlinear operators, as well as for designing
closure theories for turbulence, be it with rotation or not. Upon defining the velocity
amplitudes ξ1, ξ−1 along N and N∗ such that

û(k, t) = ξ+(k, t)N(k) + ξ−(k, t)N(−k), (2.8)

the linear inviscid solution is

ξs(k, t) = ξs(k, 0) exp

(
2isΩt

k‖

k

)
, s = ±1. (2.9)
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In terms of these modes, the complete nonlinear equation becomes(
∂

∂t
+ νk2 − is

(
2Ω

k‖

k

))
ξs =

∑
s ′,s ′′=±1

∫
k+ p+q=0

mss ′s ′′(k, p)ξ ∗
s ′( p, t)ξ ∗

s ′′(q, t) d3 p, (2.10)

in which the left-hand side linear operator is diagonal, and the right-hand side is the
modified form of the quadratic nonlinear term, exhibiting the interaction operator m.
In this way, one may separate the rapid oscillating part of the complete nonlinear
solution of (2.10) from slowly varying amplitudes as , s = ±1, as in multiple-time-scale
analysis. The solution is formally written as

ξs(k, t) = as(k, t) exp

(
2isΩt

k‖

k

)
, s = ±1, (2.11)

and from (2.8) the ith component of the Fourier coefficient of the velocity is

ûi(k, t) =
∑
s=±1

as(k, t) exp(isσkt)Ni(sk). (2.12)

In the evolution equation for the slow amplitudes as , the linear operators are absorbed
into the nonlinear one, as integrating factors:

ȧs+νk2as =
∑

s ′,s ′′=±1

∫
k+ p+q=0

exp

(
−2iΩ

(
s
k‖

k
+ s ′ p‖

p
+ s ′′ q‖

q

)
t

)
× mss ′s ′′(k, p)a∗

s ′( p, t)a∗
s ′′(q, t) d3 p (2.13)

with the influence matrix mss ′s ′′ given in Cambon & Jacquin (1989), Waleffe (1993).
Equation (2.13) demonstrates the importance of the resonant triads σk ± σp ± σq = 0
that appear when the phase term in (2.13) is zero:

k‖

k
±

p‖

p
±

q‖

q
= 0 with k + p + q = 0. (2.14)

Resonant and almost resonant triads are expected to dominate nonlinear slow motion,
since significant non-zero values of k‖/k ± p‖/p ± q‖/q on the right-hand side of
(2.13) severely damp the nonlinearity by scrambling. In that case, why not obtain a
simplified model by solving equation (2.13) with an integral restricted to the resonant
triads? This cannot be done, because the resonant surfaces are complex enough
for very accurate interpolation to be needed, rendering the resulting computation
only relevant for a smooth distribution of the slow amplitudes as in Fourier space.
Such a smooth distribution cannot represent turbulence, so that one has to resort
to describing statistical quantities instead, which are naturally smooth. Closing the
equations for these statistical moments renders a quasi-normal assumption necessary,
yet resonant surface integrals can be employed, as described in the following section.

2.2. Equations for second-order correlations

From the definition of the second-order spectral tensor,

〈ûi(k, t)û∗
j ( p, t)〉 = Φij (k, t)δ(k − p), (2.15)

and the relation (2.12) which links the fluctuating velocity and the slow-varying
amplitudes, one may obtain the correlation tensor

Φij =
∑

s,s ′=±1

Ass ′(k, t)Ni(sk)Nj (s
′k)ei(s+s ′)σ t (2.16)

where the Ass ′ are second-order correlations of the slow amplitudes

〈as(k, t)a−s ′(k′, t)〉 = Ass ′(k, t)δ(k + k′). (2.17)
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These correlations are closely related to the set e, ζ , h (energy, polarization anisotropy,
helicity, see Appendix B), as follows:

e = A1;−1 + A−1;1, ζ = 2A−1;−1e
−2iσ t , h = A−1;1 − A1;−1. (2.18)

The following system of equations is obtained for the second-order spectral tensor:(
∂

∂t
+ 2νk2

)
e = T (e) =

1

2
(τii + τ ∗

ii), (2.19)(
∂

∂t
+ 2νk2 + 2iσk

)
ζ = T (ζ ) =

1

2
NiNj (τij + τ ∗

ji), (2.20)(
∂

∂t
+ 2νk2

)
h = T (h) = −1

2
i
kl

k
εlij (τij + τ ∗

ji), (2.21)

which may also be written for the Ass ′:

∂Ass ′

∂t
=

1

4
N∗

i (sk)N∗
j (s ′k)(τij + τ ∗

ji)e
−i(s+s ′)σ t . (2.22)

Contributions from velocity triple correlations are collected into the symmetric
generalized spectral transfer tensor τij +τ ∗

ji , which is an unclosed term in the equation
that governs Φij .

If the system of equations (2.19)–(2.21) start with three-dimensional isotropic
initial data, that is with e(k, t = 0) = E(k)/(4πk2) and ζ = h = 0, E(k) being a given
distribution of spectral energy, anisotropy which reflects the transition towards
two-dimensional structure may be created only by the nonlinear spectral transfer
terms. This anisotropy has to be consistent with the axisymmetry of the problem, so
that isotropy is broken through the dependence on θ = cos−1(k‖/k) of the spectral
quantities e = e(k, θ, t) and ζ = ζ (k, θ, t). Note that ζ (k) has to be zero when k is
parallel to the vertical axis, if the closure model is to agree with the symmetries of the
rotating Navier–Stokes equations (axisymmetry without mirror symmetry is ensured
by the equations if initially satisfied).

2.3. Improved EDQNM modelling from previous versions

The derivation of a general quasi-normal (QN) model using the Green’s function of
the linear operator is detailed in Cambon & Scott (1999), and references therein. The
corresponding expression for the tensor τij , which reflects the contribution of triple
correlations to the equation governing Φij , consists of an integral over the third-order
spectral tensor, the equation for which is closed by the quasi-normal relationship as
follows:

τij (k, t) = Pjkl(k)

∫ t

−∞

∫
k+ p+q=0

G
(0)
im(k, t, t ′)G(0)

kp ( p, t, t ′)G(0)
lq (q, t, t ′)

× Φpn( p, t ′)
[

1
2
Pmnr (k)Φqr (q, t ′) + Pqnr (q)Φmr (k, t ′)

]
d3 p dt ′, (2.23)

in which Pijk(k) = kjPik(k) + kkPij (k) and the viscous term is reinserted at no cost in
the RDT Green’s function as

G
(0)
ij (k, t, t ′) = GRDT

ij (k, t, t ′)e−νk2(t−t ′). (2.24)

G(0) directly generates the zeroth-order Kraichnan response function, which is a
key quantity in any renormalized perturbation theory. The triple product of Green’s
functions in (2.23) arises from the Green’s function solution of the third-order moment
equation, and integration is performed over the triads such that k + p + q = 0 so
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that q should be replaced by −k − p throughout the integrand. The only assumption
in (2.23) is the quasi-normal writing of fourth-order velocity correlations in terms of
products of second-order ones. The difference with quasi-isotropic versions is that the
exact linear terms are taken into account, and anisotropy is explicitly retained in the
formulation.

As in all renormalized perturbation theories, which were developed in isotropic
turbulence, it is necessary to replace the ‘bare’ viscous Green’s function (2.24) by a
renormalized version, otherwise the resulting model is not realizable (Orszag 1970).

This is done in the eddy-damped quasi-normal model (EDQN) by changing the
viscous factor νk2 to µ = νk2 + µ′ in the zeroth-order response function (2.24).
Accordingly, the EDQN nonlinear transfer term is

τij (k, t) = Pjkl(k)

∫ t

−∞

∫
k+ p+q=0

Gim(k, t, t ′)Gkp( p, t, t ′)Glq(q, t, t ′)

× Φpn( p, t ′)
[

1
2
Pmnr (k)Φqr (q, t ′) + Pqnr (q)Φmr (k, t ′)

]
d3 p dt ′, (2.25)

with the mollified kernel

Gij (k, t, t ′) = GRDT
ij (k, t, t ′)e−νk2(t−t ′)exp

(
−

∫ t

t ′
µ′(k, t ′′) dt ′′

)
. (2.26)

The regularization coefficient µ′(k, t) = A(
∫ k

0
p2E(p, t)dp)1/2 was proposed by Pouquet

et al. (1975) for isotropic EDQNM. This eddy damping involves the inverse of the
integral time scale introduced by Comte-Bellot & Corrsin (1971) instead of the local
estimate µ′ ∼ k3/2E1/2 initially proposed by Orszag (1970).

Equation (2.25) exhibits the generic anisotropic structure of most generalized
classical theories dealing with two-point closure, or renormalized perturbation
theories, but its zeroth-order limit involves, as the zeroth-order response tensor, a
full RDT viscous Green’s function which is more relevant than the laminar viscous
one.

We now discuss the Markovianization procedure, i.e. the way we treat time-
dependence in the integrands that connect the transfer term to second-order
correlations. We notice three kinds of time-dependent terms in (2.25):

(a) viscous or viscous–damping terms exp(
∫ t

t ′ µ dt ′′) which we write as V (t, t ′),
(b) components of the RDT Green’s function G(t, t ′), proportional to

exp (±iσ (t − t ′)),
(c) products of the second-order spectral tensor components Φ..(t

′), or equivalent
products of e(t ′), ζ (t ′) and h(t ′).
In the Markovianization procedure used in classical EDQNM1, V (t, t ′) is assumed
to be rapidly decreasing in terms of the time separation t − t ′ and the eddy–viscous
damping µ varies slowly enough to be assumed constant. All the other terms are
evaluated at t ′ = t and are consistently replaced by G(t, t) and Φ(t). However, since
G(t − t ′) is responsible for breaking the initial isotropy in rotating turbulence, this
model does not produce any anisotropic structure.

This drawback is removed in EDQNM2 by approximating only the e, ζ and h terms
at t = t ′, and retaining the complete V (t, t ′) and G(t, t ′) terms in the time integrand.
The latter integral of a three-fold product of response functions yields the following
closed nonlinear transfer:

T (e,Z,h) =
∑

s=±1,s ′=±1,s ′′=±1

∫
Sss ′s ′′

(e, ζ, h)

µkpq + i(sσk + s ′σp + s ′′σq)
d3 p. (2.27)
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EDQNM2 compared well with high-resolution 528 × 128 × 128 large-eddy simulations
(LES) in view of the creation of directional anisotropy, and for predicting
the development of anisotropy (CMG). However, regarding the rapid–slow
decomposition (2.11), one can enlarge the scope of application of EDQNM2 by
relaxing the ‘slow’ approximation of e, ζ and h. In agreement with equation (2.18),
only Z = 2A−1;−1 has to be considered as a slow variable. In this EDQNM3 model,
e(t ′) = e(t), h(t ′) = h(t), Z(t ′) = Z(t), but in the integral, ζ (t ′) = Z(t) exp(−2iσ t ′); and
V (t, t ′), G(t, t ′) as before. This model consistently treats all Ass ′ as slow variables.
EDQNM3 differs only slightly from EDQNM2, but offers valuable advantages. First,
it is exactly equivalent to the model derived directly from the slow amplitudes,
using (2.11) and (2.13). As a consequence, its asymptotic limit at large t , and small
Rossby number, when µ � 2Ω , coincides exactly with Eulerian wave-turbulence
theory. Second, realizability can be demonstrated in this limit (Bellet 2003), while it
is not mathematically ensured in the EDQNM2 version.

In EDQNM3 the transfer tensor becomes

τij (k, t) =
1

2

∑
s,s ′,s ′′,s1,s2

Pjlm(k)

∫
�3

∫ t

−∞
e[i(sσk+s ′σp+s ′′σq )−µkpq ](t−t ′)ei(s ′+s1)σpt ′

× Ni(sk)Nl(s
′ p)Nm(s ′′q)Nk(s1 p)As ′s1

( p, t)

×
[
ei(s ′′+s2)σq t ′ 1

2
Ppkn(k)Np(−sk)Nn(s2q)As ′′s2

(q, t)

+ ei(s+s2)σkt
′
Ppkn(q)Np(−s ′′q)Nn(s2k)Ass2

(k, t)
]
dt ′d3 p (2.28)

in which the quadratic slow amplitude terms have been set to their instantaneous
values at t , and µkpq =µ(k, t) + µ(p, t) + µ(q, t). Analytical time integration of

exponential terms ei(..)t ′
is performed assuming constant µ, so that EDQNM3 finally

is

τij (k, t) =
1

2

∑
s,s ′,s ′′,s1,s2

Pjlm(k)

∫
�3

Ni(sk)Nl(s
′ p)Nm(s ′′q)Nk(s1 p)As ′s1

( p, t)

× ei(s ′+s1)σpt

[
1
2
Ppkn(k)Np(−sk)Nn(s2q)

As ′′s2
(q, t)ei(s ′′+s2)σq t

µkpq − i(sσk − s1σp − s2σq)

+ Ppkn(q)Np(−s ′′q)Nn(s2k)
Ass2

(k, t)ei(s+s2)σkt

µkpq − i(s ′′σq − s1σp − s2σk)

]
d3 p. (2.29)

The usual tensorial notation of the transfer is used in the above equation, but it is
easy to derive corresponding equations for the sets (A1;−1, A−1;1, A−1;−1) or (e, Z, h), as
in CMG. The only difference between EDQNM2 and EDQNM3 concerns the rapid
Coriolis-induced phase of ζ , or s ′ = s1 and s ′′ = s2 terms, so that the final EDQNM3

expressions for (T e, T Z , T h) are very close to those in CMG (also in the appendix of
Cambon, Rubinstein & Godeferd 2004b, referred to herein as CRG).

Another way of obtaining these closed equations for the slow-amplitude double
correlations is to construct moment equations in terms of 〈asas ′ 〉, 〈asas ′as ′′ 〉, etc.,
directly from equations (2.13) and (2.17). Since passing from ûi to as involves the
eigenmodes Ni , as do the Green functions and projection operators, the amount
of work is equivalent. The “Byzantine use of projectors” (Turner 1999), is not an
impediment to deriving final equations in terms of slow amplitudes only, which is the
aim of wave-turbulence Eulerian theory, as described in the following section.
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3. The asymptotic quasi-normal Markovian (AQNM) model
3.1. Removing rapid oscillations

A simplified form of τij is first obtained by taking t large, dropping those terms in
equation (2.29) which are rapidly oscillating as functions of p. Upon close examination
of the corresponding terms in (2.29), this results in

τij = Rij +
∑

s3,s4=±1

Iij ;s3s4
As3s4

ei(s3+s4)σkt (3.1)

where

Rij (k, t)=
1

4

∑
s,s ′,s ′′

Pjlm(k)Ppkn(k)Ni(sk)Np(−sk)

×
∫

�3

Nk(−s ′ p)Nl(s
′ p)Nm(s ′′q)Nn(−s ′′q)

As ′;−s ′( p, t)As ′′;−s ′′(q, t)

µkpq −i[sσ (k)+ s ′σ ( p)+ s ′′σ (q)]
d3 p,

which only involves the real components As;−s(k, t) and

Iij ;s3s4
=

1

2

∑
s ′,s ′′

Pjlm(k)Ni(s3k)Nn(s4k)

×
∫

�3

Nk(−s ′ p)Nl(s
′ p)Nm(s ′′q)Np(−s ′′q)

Ppkn(q)As ′;−s ′( p, t)

µkpq − i[s ′σ ( p)+ s ′′σ (q)− s4σ (k)]
d3 p.

(3.2)

Both Rij and Iij ;s3s4
are slowly varying quantities, as is As1s2

, so the above expression
for τij explicitly shows the fast-time dependence. Substituting the asymptotic result for
τij into the evolution equation for Ass ′ and dropping those terms which are rapidly
oscillating in time, so that only terms with s3 + s4 − s − s ′ = 0 are conserved in
equation (2.22), yields the equation

∂As;−s

∂t
= BsAs;−s + Cs

with

Bs(k, t) = −2
∑
s ′s ′′

∫
�3

gs ′s ′′
µkpq

µ2
kpq + F 2

s ′s ′′
Ass ′( p, t) d3 p, (3.3)

Cs(k, t) = 2
∑
s ′s ′′

∫
�3

γs ′s ′′
µkpq

µ2
kpq + F 2

s ′s ′′
Ass ′( p, t)Ass ′′(q, t) d3 p, (3.4)

and the equation

∂Z

∂t
= DZ, Z = 2A−1;−1

with

D(k, t) = −
∑
s ′s ′′

∫
�3

gs ′s ′′
µkpq + iFs ′s ′′

µ2
kpq + F 2

s ′s ′′
e( p, t) d3 p. (3.5)

The expression for γs ′s ′′ is given in the next section in terms of gs ′s ′′ , itself detailed
in Appendix D in terms of (k, p, q). Again, as in EDQNM2, dispersion frequencies
appear only through the term Fs ′s ′′ = σk + s ′σp + s ′′σq .
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3.2. The asymptotic limit of small damping

The asymptotic evolution equations are obtained by taking the limit µkpq → 0 in
the above expressions for Cs , Bs and D. In wave-turbulence theory, it is usual to
replace the volume integral by a surface integral over the resonant surface in this
limit, for instance, the Plemelj–Sokhotsky formula 1/(d − ix) = πδ(x)+iP(1/x) is used
by Caillol & Zeitlin (2000), where P is the principal value. However, taking the limit
is not simple, and is valid only for the real part of the rational fraction involved in
equation (3.5) or in equations (3.3) and (3.4), but not for the imaginary part of the
fraction appearing in the D coefficient. In this section, we briefly present the path to
the final surface integrals, taking the limits for granted. Details on their derivation
are given in Appendix C.

Starting with the real part, it is necessary to parameterize the resonant surface,
which is the set

Ss ′s ′′(k) = { p ∈ �3, such that σ (k) + s ′σ ( p) + s ′′σ (−k − p) = 0}. (3.6)

We also introduce the parameter d which plays the role of µkpq in the above. Knowing
the following limit of the function of x:

fd(x) =
d

d2 + x2
→ πδ(x) for d → 0,

one finds that ∫
�3

A(k, p)
d

d2 + F 2
s ′s ′′

d3 p → π

∫
�3

δ(Fs ′s ′′)A(k, p) d3 p (3.7)

when d goes to zero. The latter integral is recast as the surface integral∫
Ss′s′′

A(k, p)

αs ′s ′′
dS

in which αs ′s ′′ denotes the gradient of the function Fs ′s ′′/π along the direction normal
to the surface Fs ′s ′′ = 0:

αs ′s ′′ =
1

π
|s ′Cg( p) − s ′′Cg(q)|.

The coefficient αs ′s ′′ involves the group velocity Cg(k) = −(2Ωk⊥/k2)e(2)(k) and is
therefore angular dependent.

For the imaginary part of the fraction in equation (3.5) for D, one uses the limit at
vanishing d: ∫

�3

Fs ′s ′′

d2 + F 2
s ′s ′′

A(k, p) d3 p → −
∫

�3

A(k, p)

Fs ′s ′′
d3 p (3.8)

which is a principal value integral in the vicinity of the resonant surface.
Accordingly, the coefficients Bs , Cs , D take the following asymptotic values, in the

limit of vanishing µkpq:

Bs(k, t) = −2
∑
s ′,s ′′

∫
Ss′s′′

gs ′s ′′

αs ′s ′′
Ass ′( p, t) dS, (3.9)

Cs(k, t) = 2
∑
s ′s ′′

∫
Ss′s′′

γs ′s ′′

αs ′s ′′
Ass ′( p, t)Ass ′′(q, t) dS, (3.10)
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D(k, t) = −
∑
s ′,s ′′

[∫
Ss′s′′

gs ′s ′′

αs ′s ′′
e( p, t) dS + i−

∫
�3

gs ′s ′′

Fs ′s ′′
e( p, t) d3 p

]
. (3.11)

Going back to variables e, Z, h from their definitions (2.18) one finds (omitting the
obvious explicit time dependence of the spectra)

T (e) =
∑
s ′s ′′

∫
Ss′s′′

gs ′s ′′

αs ′s ′′
[e( p)(e(q) − e(k)) + s ′h( p)(s ′′h(q) − h(k))] dS,

T (h) =
∑
s ′s ′′

∫
Ss′s′′

gs ′s ′′

αs ′s ′′
[s ′h( p)(e(q) − e(k)) + e( p)(s ′′h(q) − h(k))] dS,

and T (Z) =ZD(k, t), using γs ′s ′′(k, p, q) = [gs ′s ′′(k, p, q) + gs ′′s ′(k, q, p)]/2 in (3.10). In
addition to the gradient term αs ′s ′′ , these transfer integrals only involve a single
geometric factor gs ′s ′′ given in equation (D 2).

3.3. Preliminary comments about AQNM final equations

The transfer terms T (e) and T (h) exactly set the rates of change ∂e/∂t and ∂h/∂t in
the inviscid limit. They look similar to those derived by Galtier (2003), but geometric
coefficients may differ, according to the way integrands are symmetrized in terms
of p and q. Although a non-zero viscous–damping coefficient d =µkpq has to be
considered in order to correctly derive the asymptotic limit, this d term no longer
appears in the final equations.

Strong anisotropy results from the angular-dependent αs ′s ′′ term and from the
topology of the resonant surfaces themselves; both effects reflect the appearance of a
Dirac function δ(Fs ′s ′′) in energy and helicity transfers (see also Galtier 2003). Because
of the link of αs ′s ′′ to the group velocity, the transfers scale as 1/Ω , which therefore
replaces the eddy-damping time scale 1/µkpq in classical EDQNM models with no
rotation.

In the strict limit cos θ = 0, the resonant surfaces approach the horizontal plane
and a vertical plane, so that only planar triads are involved for e and h, as in pure
two-dimensional turbulence. This result is consistent with the first-order decoupling of
the purely two-dimensional mode observed by Waleffe (1993). Nevertheless, we have
seen that the AQNM energy transfer always scales as 1/Ω , whereas the rotation term
disappears in the purely two-dimensional case. In addition, the geometric coefficient
gs ′s ′′/αs ′s ′′ in AQNM at cos θ =0 does not coincide with its counterpart in, e.g.,
two-dimensional EDQNM (Leith 1971).

The transfer T (Z) in AQNM is linear in Z, and is the only term which does not
reduce to a surface integral. Much more complex quadratic interaction terms that
involve Z in volumic EDQNM2−3 models are discarded in AQNM when removing
rapidly oscillating terms. The latter approximations, used in § 3.1, are valid if eiασkt with
α = s3 + s4 − s − s ′ = ± 2, ±4 are very rapidly oscillating terms. They are questionable
if cos θ = k‖/k is small enough, with a value of the same order as the inverse of the
rotation frequency, since σk = 2Ω cos θk . Accordingly, there exists a domain in which
AQNM equations are no longer valid. As a consequence, the Ass ′ have to be governed
by different equations in the inner ‘slow manifold’ and in the outer domain; hence
these ‘slow amplitudes’ can vary rapidly in the vicinity of k‖ =0, so that the slow/fast
time separation is no longer valid and the resonance condition does not hold for the
‘slow’ manifold. This issue is further discussed in § 6.2 and in CRG.
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4. Numerical scheme for the energy equation
From the previously introduced dynamical equations, we retain only the energy

equation e, since we take h = Z = 0 initially, and the equations for h and Z imply that
they remain zero. The following Lin-type equation has to be solved:

∂e

∂t
+ 2νk2e =

∑
s ′s ′′

∫
Ss′s′′

gs ′s ′′(k, p, q)

αs ′s ′′( p, q)
e( p, t)[e(q, t) − e(k, t)] d2 p. (4.1)

This equation is dimensional, and its dimensional analysis, with related definitions
of key non-dimensional time scales, can be obtained as follows. The wavenumber is
non-dimensionalized by K0, which is an inverse length scale; the energy spectrum e

is scaled by an energy density amplitude A. A typical velocity scale is u′ ∼ A1/2K
3/2
0 ;

instead of defining a typical time scale by L/u′ ∼ A−1/2K
−5/2
0 , the scaling of the

nonlinear time scale derives from the scaling of equation (4.1). The ratio gs ′s ′′/αs ′s ′′

scales as πK3
0/Ω , so that the transfer term can be evaluated by T (e) ∼ πK5

0A
2/Ω , and

from e,t ∼ A/t̂NL ∼ π(K5
0/Ω)A2 the typical nonlinear time scale is derived:

t̂NL =
Ω

πAK5
0

.

On the other hand, a classical Rossby number is defined as Ro ∼ u′/(ΩL) or

Ro = A1/2K
5/2
0 Ω−1,

so that Ωt ∼ Ro−2 for t ∼ t̂NL. Thus, the evolution time for e implied by (4.1) is
O(Ro−2Ω−1).

One can distinguish three domains, depending on the elapsed time. At the shortest
times, Ωt ∼ 1, nonlinearity is negligible, and e is conserved. At larger times, Ωt ∼ Ro−1,
one recovers the time scale which is relevant for classical nonlinear dynamics, e.g.
related to conventional energy transfer in terms of volume integral. Only at the
largest times, Ωt ∼ Ro−2, can the ‘weak’ cascade become established in inertial wave-
turbulence, and e evolve.

The previous analysis is essentially inviscid. If the viscous term is accounted for in
equation (4.1), only for numerical convenience, a fictitious Reynolds number can be
defined as Re = πAk3

0/(2Ων). Since the typical time scaling t/t̂NL is used, the Rossby
number has disappeared at this point, and an apparently low value of the Reynolds
number is found.

Starting from a pure three-dimensional isotropic case, with e =E(k)/4πk2, an
angular-dependent e(k, θ, t) distribution is created by the anisotropic energy transfer.
The viscous term is marginal in our study since we are interested in the limit of
infinite Reynolds number and vanishing Rossby number. Non-zero viscosity will be
introduced only for numerical convenience. Since we have used an Euler scheme for
time marching, the viscous term in (4.1) can be readily added in an implicit way by
using integrating factors.

Numerical implementation, parameters

First of all, from equation (4.1) we note that if the energy spectrum is initially
axisymmetric or contains mirror symmetry, it conserves this property. This is used
for reducing the number of degrees of freedom in the computation. Singularities due
to the cancelling of the denominator αs ′s ′′ are removed by using symmetries of the
integrand (see Bellet 2003 for details).

The integral in (4.1) can be recast in terms of the normalized wavevectors
K = k/k, P = p/k and Q = q/k. Without loss of generality the components of K are
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Figure 1. , Variation of the unsigned value of the integrated transfer as a function of
Mρ , with Mθ = 200, Mφ = 100, km = 0.1 and kmax =10. , The least-squares fit, exhibiting

a M−1.98
ρ dependence.

K1 = sin θ , K2 = 0, K3 = cos θ . The second leg of the triad is parameterized in spherical
coordinates with an exponential radius as P = exp(ρ)[sin θ ′ cosφ′, sin θ ′ sinφ′, cos θ ′],
and Q is the difference K − Q. The choice of an exponential radial parameter
simplifies the computation of the geometric coefficients. In view of the symmetries of
the integral, the triplet is such that ρ ∈] − ∞, ∞[, θ ′ ∈]0, π[ and φ′ ∈]0, π[.

This parameter space for P is discretized using Mρ values for ρ (which yield
P ∈ [km, kM ]), Mθ polar angles and Mφ azimuthal ones. The intersection of each
elementary volume of this grid with the surface Ss ′s ′′ is obtained by inspection of the
sign of the characteristic function fs ′s ′′(ρ, θ ′, φ′) = cos θ + s ′P3/P + s ′′Q3/Q over each
vertex of the elementary volume cell. A change of sign indicates that the resonant
surface intersects the cell, and the contributed area is computed by a first-order
estimate, assimilating the surface locally to a plane. This allows one to compute
the geometrical coefficients in the energy integral of (4.1). Knowing the numerical
values of the energy e at the preceding time step over the grid points, one still has
to obtain the energy for Q, which do not necessarily lie on the grid. The required
e( Q) is interpolated with a two-dimensional second-order scheme using the values at
neighbouring points.

Choosing values for Mρ , Mθ and Mφ is not easy, and we start with the value 100
for each and let them vary to check the effects of discretization (see Appendix E for
details). We then study the dependence of the numerically integrated energy transfer,
which should cancel out over the whole spectral space due to energy conservation:∫ ∞

0

k2

(∫ π

0

T (k, θ) sin θ dθ

)
dk = 0.

Of course, the above integral is not exactly zero for a finite discretization and truncated
k, but should be small, and converge to zero with increasing degrees of freedom. The
dependence on Mρ is the strongest, which we estimate to be with a power between
one and two, as illustrated by figure 1.
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Figure 2. Three-dimensional rendering of the resonant surface, i.e. the locus of p, at k =1 and
θk =1.4, with 100 points of discretization for wavenumbers, latitude and azimuthal angles. The
large conical-shaped fold is theoretically infinite, but is truncated at the maximum wavenumber.
Two smaller closed folds are observed on top of it. The same symmetrical folds exist behind
these, only hinted here. Note that the points connecting the closed folds and the infinite one
are singular and quite complex to accurately account for.

A three-dimensional plot of a resonant surface for θ = 1.4 is provided in figure 2,
showing how complex resonant surfaces can become, exhibiting cusps at the
connection of the different folds. When θ varies between 0 and π/2, the surface
shape changes, the closed loops eventually becoming infinite.

5. Numerical results
Solving numerically the AQNM energy equation reliably with accuracy has been

the main challenge of this study. To our knowledge, this has never been done in the
wave-turbulence community. Given the complexity of resonant surfaces, numerical
integration has to involve a huge number of degrees of freedom; related matrices
have a typical size, for instance 3003 at the maximum, which can be of the same order
of magnitude as for pseudo-spectral DNS. The important computational resources
used to solve the AQNM energy equation were also used to perform new runs of the
volumic EDQNM2-3 code, with much better conditions (spatial resolution, number
of time steps) than in any previous computation.

In contrast to the numerical cost of a single typical AQNM run, the parametric study
is dramatically reduced. Since AQNM addresses the asymptotic limit of vanishing
Rossby number, there is no need for different values of the Rossby number. The limit
of an infinite Reynolds number is mainly addressed too, and viscosity is reintroduced
only for numerical convenience, yielding very few different runs for different Reynolds
numbers.
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Figure 3. Ratio k/ε as a function of time.

5.1. Time evolution of the energy and related transfer

AQNM equation (4.1) is solved starting from an isotropic narrow-band energy
spectrum, as is usual in DNS and EDQNM (Orszag 1969). During a first phase,
without viscosity, an inertial zone develops, and extends towards larger and larger
wavenumbers. At a time tf (kmax), the inertial zone reaches the largest wavenumber of
the mesh, denoted kmax , and the tail of the energy spectrum begin to display a bump,
which can eventually create a numerical instability. A laminar viscous term is added
to remove this bump, and to allow us to continue the calculation to larger times. In
this sense, viscosity is a numerical artifact, and the low value of the typical Reynolds
numbers defined below is not physically relevant. The ratio of kinetic energy to
dissipation, k/ε, is plotted on figure 3 as a function of time. In isotropic turbulence, it
is expected to evolve linearly with time after the initial transient, and this behaviour
is recovered here as shown on figure 3.

5.1.1. Distribution of the spectral density of energy and related transfer

We first consider the energy spectrum E(k, t) which is derived from e(k, cos θ, t) by
spherical integration over θ of the energy density spectrum:

E(k, t) = 4πk2

∫ 1

0

e(k, x, t) dx, x = cos θ.

Figure 4 shows the evolution of E(k) starting from the narrow-band spectrum we
have selected as the initial condition. There are two stages in the time evolution of
the spectrum. First, as shown on figure 4(a), the spectrum widens until it reaches the
smallest scales consistent with the dynamics at the given Reynolds number Re = 5. The
corresponding time is approximately t = 0.525. At this point, the dissipative subrange
is completely operative, and the spectrum begins to decay so that the system globally
loses energy, as shown in figure 4(b). As the first notable result, the inertial range
is established naturally with a clear k−3 power law for E(k). This scaling of the
inertial range was identified in rotating turbulence in forced numerical simulations
by e.g. Smith & Waleffe (1999); Hossain (1994), recovered in high-resolution freely
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Figure 4. Temporal evolution of the spherically integrated energy spectrum at Re = 5,
kmax = 60, dt = 5 × 10−5: (a) between t0 = 0 and t = 0.525 in steps of 0.0375; (b) between
t =0.525 and tf = 1.05 with the same time step. The arrows denote increasing time and the

straight line shows the k−3 dependence.

decaying EDQNM2,3 with the highest resolution (Bellet 2003), and in LES by Yang
& Domaradzki (2004).

The build-up of the angular dependence is illustrated by iso-values of e in the (k, θ)-
plane, plotted in figure 5. The initial distribution (shown on figure 5a) is isotropic,
so that the contours are straight lines parallel to the θ-axis, showing no dependence
of the spectrum on the angle θ . Almost instantaneously after t = 0 (figure 5b), the
spectrum begins to spread in the angular direction, showing an exchange of energy
between different inertial waves of different propagation angle, as an adjustment of
the dynamics of turbulence under the effect of the Coriolis force. Of course, energy is
also transferred between different wavenumbers, as observed in figures 5(c) to 5(e), at
which point the angular equilibrium of the spectrum is almost reached. Finally, the
last figure 5(f ) shows that e is large in the neighbourhood of the horizontal plane
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Figure 5. Iso-values of the spectral energy density e(k, θ ) at Re = 5, kmax = 60, dt = 5 × 10−5

between t = 0 and t = 0.75: (a) t = 0, (b) 0.075, (c) 0.15, (d) 0.3, (e) 0.45, (f ) 0.75.

θ = π/2, whereas only a weak angular dependence of the energy density spectrum
is observed away from this region. This distribution is qualitatively very similar to
the one found by CMG (their figure 6), both from EDQNM2 results and large-eddy
simulation of homogeneous turbulence with rotation.

An additional viewpoint on the energy density distribution is obtained by plotting
the compensated spectrum 4πk2e(k, cos θ, t) versus k, at different fixed angles θ as
done on figures 6(a) and 6(b). All curves collapse onto E(k) for isotropic turbulence
(e.g. here at t = 0). For angles close to π/2, the slopes are significantly less steep
than k−3, about k−2, whereas they are steeper than k−3 for angles far from π/2. It
is therefore clear that the k−3 law for E(k, t) results from averaging over all angles.
Figures 6(c) and 6(d) represent the same quantity multiplied by sin θ , which is the
weighting factor which appears in the integral when computing E(k, t). Figures 6(a, c)
shows the distribution at t = 0.525 and (b, d) at t = 1.05, from which we notice that
the level of the spectrum that is close to horizontal has increased between these times.

Comparing either figures 6(a) and 6(b) or 6(c) and 6(d) indicates a striking similarity
between the spectra at different times. More detailed study shows that, leaving aside
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Figure 6. Spectral energy density for different angles, from bottom to top, θ/(π/2) = 1/300
(what we call the ‘vertical’ mode, 51/300, 101/300, 151/300, 201/300, 251/300 and 299/300
(the ‘horizontal’ mode) at Re = 5, kmax = 60, dt = 5 × 10−5, at (a) t = 0.525 and (b) t = 1.05.
(c, d) The same quantity multiplied by the corresponding sin θ for each given angle. The k−3

slope is also plotted. (e) Same as (c) and (d) with a zoomed scale and data at t = 1.05 shifted
two decades to the right (axis labels on top).

the high-wavenumber components which are affected by viscosity and the highest of
the curves (very nearly horizontal wavectors), spectral evolution is self-similar. This
is best observed in figure 6(e) which combines plots 6(c) and 6(d) on a zoomed scale.
Whereas the maximum energy density for the angle close to the horizontal hardly
changes, the remaining curves fall together with increasing time. It therefore appears
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Figure 7. Self-similarity of the spherically integrated energy spectra multiplied by k3 at times
t between 0.525 and 1.05, renormalized by the time-dependent total kinetic energy, plotted as
a function of the wavenumber k∗, renormalized by the time-dependent peak wavenumber.

that the large-time behaviour is self-similar outside a neighbourhood of θ = π/2 whose
width decreases to zero. Figure 7 confirms this conclusion.

In isotropic turbulence, the direction over which spectra are integrated in spectral
space to yield one-dimensional spectra does not modify the k−5/3 power law of the
inertial range. However, the same integration of the anisotropic spectrum e(k, cos θ)
over horizontal planes in spectral space, or over vertical cylinders, modifies the
scaling of the resulting one-dimensional spectrum, as exhibited on figures 8(a) and
8(b) respectively. In the one-dimensional horizontal spectra Eh(k‖) and Eh(k⊥), the
scaling is not k−3 whereas this scaling describes the vertical spectra Ev(k‖) and Ev(k⊥).
This is due to the specific distribution in spectral space directions of the energy
density spectrum e(k, cos θ).

A way of quantifying the angular distribution of energy is to compute the energy
at each angle integrated over every wavenumber

Eang(θ, t) = 2π

∫ ∞

0

k2e(k, θ, t) dk (5.1)

such that the total energy is recovered as Et (t) =
∫ π

0
Eang(θ, t) sin θ dθ . Another

interesting quantity is the fraction of the total energy contributed by angles between
θ and π − θ:

Efrac(θ, t) = E−1
t

∫ π−θ

θ

Eang(θ, t) sin θ dθ. (5.2)

The two quantities Eang and Efrac are plotted in figure 9. Their time evolution
is shown, starting with isotropic initial conditions, for which Eang(θ) = Et/2 and
Efrac = cos θ . Figure 9(a) shows that Eang grows rapidly for θ close to π/2, developing
a sharp peak for horizontal wavevectors and a distribution which is far from isotropic
at the end of the computation. Figure 9(b) also shows the development of anisotropy
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correlation spectrum Ev . Straight lines show: (a) k−5 power law; (b) k−3 power law.

and that Efrac(θ, t) appears to approach a limit E∞
frac(θ) at large times, reflecting the

self-similarity discussed earlier. According to these results, 50 % of the energy at the
end of the run is contained between θ = 0 and θ = 1.25. Taken together, figures 9(a)
and 9(b) indicate that, although Eang appears to develop an infinite singularity
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√
cos θ dependence.) (b) Efrac(θ ) for the

same set of parameters.

at θ = π/2, this singularity is integrable and hence does not dominate the overall
energy.

In the same way as these angular-dependent quantities have been defined for the
energy, one may compute a similar function from the energy transfer spectrum, the
time evolution of which is plotted on figure 10, by merely replacing e(θ, k, t) by
T (θ, k, t) in equation (5.1), thus yielding Tang(θ, t). From this quantity, one obtains
the energy flux across a cut at θ: Eflux(θ, t) =

∫ π/2

θ
Tang(θ, t) sin θ dθ . Figure 11 shows

how this quantity evolves in time: the energy flux is maximal at the beginning of
the computation, but its maximum is shifted as time increases towards the horizontal
plane θ = π/2, reaching almost 1.5.
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5.2. Time evolution of total kinetic energy and of single-point indicators of anisotropy

The modification of the spectral distribution of energy density in rotating turbulence
is an indicator of the structuring of the flow, and of its modified dynamics with
respect to isotropic turbulence. Upon integration of the energy density spectrum over
the complete spectral space, one obtains the total energy Et = q2/2 in the flow, whose
decay is plotted on figure 12(a). The power obtained at the end of our computation
is −0.8, which shows a strong reduction of energy transfer and hence of the decay
rate of turbulence with respect to the isotropic law t−10/7. This was again observed
by CMG and Squires et al. (1994). Comparing with the result obtained from the
EDQNM2 model run in the same conditions, we observe on figure 12(b) that the
decay rate of both models is very similar, since the EDQNM2 model yields a t−0.86

power law.
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Figure 11. Time evolution of the angular flux of energy Eflux(θ ) as a function of θ , at
Re = 5, kmax = 60, dt =5 × 10−5, between t =0 and t = 1.05.

The large-time, inviscid self-similarity identified earlier can be expressed more
precisely by

e(ks(t)κ, θ, t)

es(t)
→ f (κ, θ), (5.3)

at infinite Reynolds number as t → ∞, for any fixed values of the scaled wavenumber
κ = k/ks and θ �= π/2, where ks(t), es(t) are appropriate scales for wavenumber
and energy density. If such limiting behaviour is assumed for e and the resulting
expression,

e(k, t) = es(t)f (k/ks(t)), (5.4)

is used in the AQNM equation (4.1) (without the viscous term), the wavenumber and
energy-density scales can be shown to evolve according to the power laws

es(t) ∝ (t + t0)
5α−1, (5.5)

ks(t) ∝ (t + t0)
−α. (5.6)

As a result, the total energy, given by the spectral-space volume integral of e, behaves
like (t + t0)

2α−1. Figure 12, discussed above, shows that there is indeed a power law, a
result which supports the conclusion of self-similarity and whose exponent of −0.8 for
the total energy implies α = 0.1. Note that such a link between inviscid self-similarity
and temporal power laws is a classical one for non-rotating, isotropic turbulence (see
e.g. Monin & Yaglom 1975, section 16.1) and that, without self-similarity, a power
law is hard to explain. Note also that the scaled, limiting spectrum f (κ, θ) appears
to have an integrable singularity at θ = π/2.

The full Reynolds stress tensor involves both a spherical and a deviatoric part as
〈uiuj 〉 = q2(δij /3 + bij ), the latter deviatoric tensor bij reflecting anisotropy. Because
of the symmetry – axisymmetry without mirror symmetry – the deviatoric tensor can
be expressed by only one component, say b33, as bij =(−3b33/2)

(
δij /3 − δi3δj3

)
. In

agreement with the relationship (B 3) in Appendix B, bij is in general the sum of two
different contributions be

ij and bz
ij , which reflect the directional and the polarization
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Figure 12. (a) , Time evolution between t = 0 and t = 1.05 with Re = 5, kmax = 60 and
dt = 5 × 10−5 of the total energy Et . - - - -, t−0.8 and . . . , t−10/7 power laws. (b) , EDQNM2

and · · · , AQNM decay of total energy Et . The straight line is a t−0.86 law. The black squares
show the energy at times t = 0.525 and t = 1.05, at which the angular-dependent spectra are
plotted on figure 6.

anisotropy respectively. This decomposition here reduces to

q2b33 =

∫ [(
e − E

4πk2

)
sin2 θ + Re(Ze−2iσ t ) sin2 θ

]
d3k (5.7)

with bij = be
ij in the absence of a Z-contribution. As shown in figure 13, be

33 starts
from zero (three-dimensional isotropy) and saturates at a value close to 0.07–0.08.
This value is about half that expected for a pure two-dimensional flow, or be

33 = 1/6,
and recovered in (5.7) using for e a Dirac function e = (E(k, t)/2πk)δ(k‖) (details in
CMG, § 4). Such a saturated value is also obtained in recent DNS/LES of rotating
flows (Morinishi, Nakabayashi & Ren 2001a, b; Yang & Domaradzki 2004) in which
be

ij is plotted, following CMG (their figure 7). In some DNS/LES results, however,
this growth of be

33 is counterbalanced by a stronger decrease of bz
33, resulting in a

negative value of b33. This will be discussed in the next section.
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Re = 5, kmax = 60, dt =5 × 10−5, between t =0 and t = 1.05.

6. General discussion
Turbulence in a rotating frame illustrates the subtle interplay between linear and

nonlinear processes and the significance of spectral anisotropy, especially the angular
dependence of spectral energy which reflects dimensionality.

The breaking of isotropy is potentially present in the linear operator since the
dispersion law of inertial waves depends on their angle of propagation, as does the
anisotropic definition of the helical modes. Nevertheless, this potential anisotropy is
not necessarily reflected in statistical quantities. The second-order spectral tensor –
single-time two-point velocity correlations – remains isotropic in the linear regime, as
shown by the system of equations (2.19)–(2.21) with zero right-hand sides. A possible
breaking of isotropy through two-time velocity correlations is not discussed here for
the sake of brevity (see Cambon et al. 2004a). Going back to equation (2.19), it
is clear that isotropy is broken in the energy equation by the energy transfer term
through single-time triple correlations. Isotropy breaking in our case comes first from
the linear operators which act on triple velocity correlations as a product of three
Green’s functions (e.g. equation (2.25)).

6.1. Directional anisotropy

In addition to the detailed dependence of the energy spectra on the wavenumber
k and the angle θ , the AQNM model yields a k−3 scaling for the inertial spectral
subrange. This law is very different from the one found in two-dimensional turbulence,
which corresponds to E2D(k⊥) ∼ ω2k−3

⊥ with enstrophy (ω2) conservation. Our E(k)
is three-dimensional and would reduce to the former only if e =(E(k)/2πk)δ(k‖).
Even though some authors advocated two-dimensionalization of turbulence by rapid
rotation from forced under-resolved DNS (e.g. Hossain 1994), and tried to interpret
a k−3 law along this line, our results are not consistent with two-dimensionalization.
Looking at the explicit θ-dependent spectra, we propose that, since the horizontal
wavevectors exhibit a decay exponent larger than −3 with k whereas oblique ones
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decay with a smaller exponent, a combination of these is necessary to achieve the k−3

behaviour.
We note that the full (k, θ) distribution of the energy-density spectrum obtained with

AQNM is very much like that obtained in previous works with the EDQNM model
and LES of rotating homogeneous turbulence. The spectral anisotropy is reflected in
a specific anisotropic structuring of the flow when using specifically weighted integrals
of the energy spectrum.

The reader is referred to Galtier (2003) and CRG for a discussion of analytical laws
obtained from WT with additional assumptions (k‖ � k⊥) compared with our AQNM

numerical results. Galtier’s proposal e ∼ k
−1/2
‖ k

−7/2
⊥ is consistent with the k−2 law for

k2e(k, θ, t) at the smallest cos θ = k‖/k (figure 6), but a significant inverse cascade
is found by AQNM in this domain, which is not allowed by Galtier’s analysis. On
figure 9(a), the curve representing (cos θ)−1/2 suggested by Galtier’s analysis is plotted
against the AQNM results.

6.2. Relevance of AQNM and the role of the quasi-slow manifold

As discussed earlier, the asymptotics leading to (4.1) suffer from non-uniformity for
k near the horizontal plane. This comes about because (2.22) with (3.1) consists of
oscillatory exponential terms of frequency (s3 + s4 − s − s ′)σk . For k which are not
close to the horizontal plane, these exponentials are rapidly oscillatory, and hence
dropped in the asymptotic analysis, unless s3 + s4 = s + s ′. However, if k is close to
horizontal, σk is small and the terms are no longer rapidly oscillating. As a result,
there is a small region of angles near θ = π/2 in which a more complete asymptotic
description should be used.

Despite the above non-uniformity, the model provides a self-consistent description
of wavevectors away from the horizontal plane, because it predicts only an integrable
singularity in the energy density. Whether or not the near-horizontal region is
important depends on which statistical quantity is required. For instance, the
spherically averaged spectrum and total energy will be negligibly affected, whereas
other quantities depend on the details of near-horizontal wavenumber spectra, for
example, the integral length scales with vertical separation defined by (Cambon &
Jacquin 1989)

u2
1L

(3)
11 = u2

2L
(3)
22 = π2

∫ ∞

0

(e(k, cos θ = 0) − Z(k, cos θ = 0)) k dk,

u2
3L

(3)
33 = 2π2

∫ ∞

0

(e(k, cos θ = 0) + Z(k, cos θ = 0)) k dk.

AQNM is capable of predicting any statistical quantity of the first kind; the current
results for the spherically averaged energy spectrum and in § 5.2 for the Reynolds
stress tensor are unlikely to be modified by the refined analysis of the slow manifold.
An important feature of the extended WT theory is the emergence of the polarization
anisotropy Z, which is therefore zero almost everywhere but in the slow manifold,
as well as in our case where AQNM is started with three-dimensional isotropy. It
can therefore be inferred that the contribution of Z is unimportant for deriving e.g.
the Reynolds stress tensor, but is essential if the behaviour of typical integral length
scales is concerned.

A possible means of treating the near-horizontal wavevectors is discussed in CRG
with a proposal for using matched expansions with a specific inner model for the
slow manifold, and AQNM as the outer model. The way to perform this analysis is
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suggested by the general EDQNM2−3 model (detailed EDQNM3 equations are given
in CRG, appendix) which underlies the AQNM model.

A nonlinear Proudman theorem is often invoked, which means the independence of
the slow manifold, which could be governed by its own equations in accordance with
autonomous two-dimensional dynamics. This argument is supported by mathematical
developments for some classes of initial data (Babin et al. 1999), and not by others
(Babin et al. 2001). It is important to point out that periodicity conditions are used,
and that the possible decoupling of the two-dimensional manifold from the rest is
only valid at the first order. Our AQNM approach is essentially different since our
equations (and those of Galtier 2003) were found in a continuous unbounded domain,
excluding the exact two-dimensional manifold. This ‘nonlinear Proudman theorem’ is
either irrelevant, if the slow mode is unimportant because of its integrable singularity,
or questionable at largest times, if the slow mode is analysed by itself and/or for
specific quantities which rely only upon it. In this second case, the analysis introduced
by CRG, even if not analytically developed, demonstrates a typical coupling between
the slow and rapid modes through new volume and principal value integrals, with
respect to AQNM. These coupling terms are neglected in AQNM when discarding
those terms considered as rapidly oscillating.

6.3. Two-dimensional or not two-dimensional?

As we have seen, our results indicate the transfer of energy towards horizontal
wavevectors and also the appearance of large energy densities near the horizontal
plane. At first glance, this suggests the possibility that the flow becomes two-
dimensional. However, this is not the case for the following reasons. First, following
the development phase and hence at large times, the spectrum evolves in a self-similar
manner (recall figures 6 and 7). This outcome excludes two-dimensionalization in
the limit of large time. Secondly, as indicated by figure 9, the overall energy is not
dominated by horizontal wavevectors as it would be for a two-dimensional flow.
Figure 9 also illustrates the singularity in the energy density.

DNS and LES results have also shown the tendency of rotating turbulence to
become anisotropic by transfer towards the horizontal plane. For instance, Bartello,
Métais & Lesieur (1994) showed the development of vortices elongated in the vertical
direction, while CMG determined the time evolution of spectra leading to results
comparable with those of figure 5. However, it is difficult to decide, based on these
results, whether the flow becomes two-dimensional in the large-time limit, for several
reasons. Spatial periodicity of the flow, which is assumed numerically, implies that
the size of the periodic box must be sufficiently large in order to avoid effects of
numerical confinement. In particular, the turbulent correlation length should be small
compared with the box size, as should cgt where cg is the group velocity associated
with inertial waves. The latter condition becomes harder to satisfy the longer the time
simulated. Since the evolution time at small Rossby number scales as Ro−2Ω−1, the
limit of small Ro is particularly hard to treat.

6.3.1. Reynolds stress tensor anisotropy

Regarding Reynolds stress tensor (RST) anisotropy with directional/polarization
splitting, recent DNS/LES (CMG; Morinishi et al. 2001a; Yang & Domaradzki 2004)
with correct resolution show results similar to those of AQNM for the be

33 history,
also in agreement with EDQNM2 (CMG). The maximum value eventually reached is
never larger than 0.08, i.e. very close to the AQNM limit, and therefore remained far
from the theoretical two-dimensional limit which is 1/6. In addition, a rapid evolution
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of bz
33 can yield a strong departure of b33 from be

33, resulting eventually in a negative
value of b33 (Yang & Domaradzki 2004). Even though a significant value of Z is
expected in the slow manifold (see CMG and CRG), in agreement with the behaviour
of the integral length scales with vertical separation, we find it highly questionable that
this term could contribute dominantly to the RST anisotropy. Hence, the significant
negative value of bz

33 which contaminates b33 is probably due to the following causes:
(a) isotropy is not precisely controlled in the initial data, and strong departures from

axisymmetry appear (b11 �= b22) only after small elapsed times (Yang & Domaradzki
2004);

(b) the numerical box is too small given the huge elapsed time used, so that an
artificial confinement biases the most elongated scales;

(c) the angular-phase mixing in (5.7), due to the term e−2iσ t , which can damp any
Z contribution is not accurately computed in DNS.
Drawbacks (a, b) were not present in the LES database in CMG, with an aspect
ratio of 4 (resolution 512 × 128 × 128) optimized to control the anisotropy (initial
isotropy becoming axisymmetry) and to avoid artificial confinement. Nevertheless,
a second transition occurred, with bz

33 becoming significantly negative, although b33

itself never became negative. This result has to be considered with care, since the
typical Rossby number based on the cutoff wavenumber became of the order of unity
and unexpected oscillations appeared after the second transition. Note that in their
643 DNS/LES, Bartello et al. (1994) found strong negative values of b33, without
using the be

ij , bz
33 splitting. As a final comment, it is important to point out that a

positive value of b33 in true axisymmetrical turbulence means a = 〈u2
‖〉/〈u2

⊥〉 larger

than one (a = 2 if b33 = 1/6) whereas a negative value of b33 means a smaller than
one (a =0 if b33 = −1/3). This illustrates that dimensionality and polarization may
have opposite effects on the RST anisotropy, or componentality (see also Reynolds &
Kassinos 1995). In this view, DNS/LES may exhibit a two-component limit instead of
a two-dimensional one, due to low resolution, but also because the ensemble averages
needed to obtain reliable statistics are not available from one realization only.

6.3.2. k−3 slope

From the sole fact that the energy transfer scales as 1/Ω , a k−2 slope could
be inferred for the spherically averaged energy spectrum (Zhou 1995), but this
oversimplified argument ignores anisotropy. In contrast, our results indicate k−3 for
the spherically averaged spectrum in the inertial range. According to the power
laws, (5.5) and (5.6), arising from self-similarity of the three-dimensional spectrum,
the spherically averaged spectrum should behave as t3α−1 at large time. Given k−3

behaviour, this leads to an inertial-range spectrum like t−1k−3, with a purely numerical
prefactor. This result, when expressed in dimensional terms, implies that the inertial-
range spherically averaged spectrum scales as Ωt−1k−3, independent of the initial
spectral parameters. Comparison of the spectra in figure 4(b) at k = 2 and the two
times t =0.525 and t = 1.05 shows a decrease by a factor of very nearly 2 (to within a
few percent). Such close correspondence with the t−1 law provides further confirmation
of the hypothesis of self-similarity.

From a review of DNS/LES of decaying turbulence, it seems that only Yang
& Domaradzki (2004) found a clear transition from k−2 to k−3, the latter result
being in qualitative agreement with our AQNM results. Forced DNS/LES often
suffer from numerical biases even worse than those in the free decay, so that only
the study by Smith & Waleffe (1999) (SW) is discussed here, in which the forcing
is truly isotropic and limited to a small-scale region with wavenumber kf . Before
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comparing their results with our AQNM (numerical) ones, it is important to stress
some different definitions of spectra. In order to avoid ambiguity, the spherically
averaged spectrum and its counterpart near the ‘slow manifold’ in SW will be referred
to as EN (k) and EN (k‖, k⊥). It now appears that EN (k) is the same as our E(k), but a
prefactor k⊥ has to be introduced to compare the second spectrum with our e, so that
e(k, cos θ) ∼ k⊥EN (k‖, k⊥). Accordingly, the result of SW for the slow manifold, for k

smaller than kf , or EN (k⊥, k‖) ∼ k−3
⊥ , is consistent with the law k2e(k, cos θ ∼ 0) ∼ k−2

shown in figure 6 for the smallest values of cos θ = k‖/k = k‖/
√

k2
‖ + k2

⊥, since k ∼ k⊥

in the spectral domain considered. On the other hand, the collapse of EN (k) and
EN (k‖ =0, k⊥) observed in SW at the smallest k, interpreted as a sign of two-
dimensionalization of the largest scales, is not obtained in our AQNM results, so
that the similar k−3 laws obtained for both EN (SW) and E (AQNM) probably
have different causes. The results of SW have two consequences: an energy transfer
from small to large scales was shown, although different from the classical pure
two-dimensional dynamics one; strong coupling between rapid and slow modes is
shown, with no independence of the slow manifold. The scaling EN (k‖ = 0, k⊥) ∼ k3

⊥ is
confirmed by Smith & Lee (2005), restricting the calculation to near-resonant triads.

7. Conclusion
In this work, we propose a nonlinear model for the dynamics of inertial waves in the

limit of high Reynolds number and low Rossby number. We show that the asymptotic
behaviour of turbulence can be described independently of the explicit value of the
rotation rate, viscosity remaining only as a means of regularizing the equations at the
large-wavenumber numerical cutoff. The derivation of the asymptotic quasi-normal
model is started from the existing anisotropic eddy-damped quasi-normal statistical
model, which includes part of the Green’s function influence on second- and third-
order velocity correlations, coming from inertial waves. Instead of integrating the
energy transfer over all possible interaction triads of inertial waves, the AQNM
model is simplified compared to the EDQNM one by reducing the integration over
resonant triads of inertial waves, which are shown to emerge in the limit of fast
rotation. Thus, asymptotic analysis leads to a Lin-type energy equation, with energy
transfer computed over surfaces of resonant interactions only. Handling the complex
topology of these surfaces is the price to pay for the simplification of the integral.
The most important and original part of this work is that we propose a numerical
implementation of the AQNM model, and obtain quantitative results for the evolution
of the energy-density spectrum, to be contrasted with the qualitative results obtained
in previous wave turbulence studies through assumptions of a specific scaling of the
spectra.

The model predicts a development phase in which both anisotropy and an inertial
range appear. Subsequently, spectral power laws are found in which the spherically
averaged inertial range spectrum behaves like k−3. However, this represents the
average of power laws whose exponents depend on the wavevector direction: the
exponent runs from −2 to −4, depending on the angle considered. The spectral
evolution is observed to be self-similar at large times, an outcome which excludes
two-dimensionalization of the flow in the limit t → ∞. The energy density is found
to be large for nearly horizontal wavevectors, apparently reflecting a singularity at
the horizontal plane. However, this singularity is integrable, and so quantities like
the spherically averaged spectrum and Reynolds stresses are not dominated by this
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singularity. This may be contrasted with the two-dimensional case in which the
horizontal plane contains all the energy. Finally, the kinetic energy decays as t−0.8.

The numerical part of the work was possible thanks to parallel computing
time offered by the following national computing centers: Centre Informatique
National de l’Enseignement Suprieur (CINES, Montpellier); Commissariat à l’énergie
Atomique (CEA-CENG, Grenoble); Institut du Développement et des Ressources en
Informatique Scientifique (IDRIS, Orsay).

Appendix A. Poloidal–toroidal decomposition, and Craya–Herring frame of
reference

The poloidal–toroidal decomposition is used to represent a three-component
divergence-free velocity field in terms of two independent scalar terms, taking
advantage of the presence of a privileged direction n:

u = ∇ × (spoln) + ∇ × [∇stor×n] (A 1)

the axial vector n being chosen along the vertical direction, without loss of generality.
As a caveat, some care is needed to represent a vertically sheared horizontal
flow (VSHF, after Smith & Waleffe (2002) or u(x · n, t), with u · n = 0, with this
decomposition.

In Fourier space, the above decomposition yields a pure geometrical one, or

û = k × n(iŝpol) − k × (k × n)(ŝtor) (A 2)

and it appears immediately that the Fourier mode related to the vertical wavevector
direction, or k ‖ n, has zero contribution; this ‘hole’ in the spectral description yields
the missing VSHF mode in physical space. In order to complete the decomposition,
one can define an orthonormal frame of reference, which is in fact the local reference
frame of a polar spherical system of coordinates for k:

e(1) =
k × n

|k × n| , e(2) = e(3) × e(1), e(3) =
k
k
, (A 3)

for k × n �= 0, and e(1), e(2), e(3) may coincide with the fixed frame of reference,
with e(3) = n for k ‖ n. In the turbulence community, the local frame (e(1), e(2)) of
the plane normal to the wavevector is often referred to as the Craya–Herring frame.
Accordingly, the divergence-free velocity field in wave-space has only two components
in the Craya–Herring frame, or

û(k, t) = u(1)e(1) + u(2)e(2). (A 4)

For k × n �= 0, u(1) and u(2) are directly linked to the toroidal mode and the poloidal
mode, respectively. For k × n = 0, they correspond to the VSHF mode. RDT equations
can be written in the Craya–Herring frame, resulting in a reduced Green’s function
with only four independent components (Cambon 1982). A similar decomposition
is used in Bartello et al. (1994). Finally, the ‘wave-vortex’ decomposition introduced
by Riley, Metcalfe & Weissman (1981) in the particular context of stably stratified
turbulence, is also a particular case of (A 1).

Appendix B. Anisotropic description for second-order statistics
Independently of closure, the spectral tensor Φij is not a general complex matrix,

but has a number of special properties, including the fact that it is Hermitian,
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positive-definite, and satisfies Φijkj =0, obtained from the incompressibility condition
kj ûj = 0. Taken together, these properties mean that, instead of the 18 real degrees
of freedom of a general complex tensor, Φij has only four. Indeed, using a spherical
polar coordinate system in k-space, or (A 3) and (A 4), the tensor takes the form

Φ =

⎛⎝ e−ζr −ζi + ih 0
−ζi − ih e+ζr 0

0 0 0

⎞⎠ (B 1)

see CMG for details, in which ζ ∗ was denoted Z). The scalars e(k, t) and h(k, t)
are real, and ζ (k, t) = ζr + iζi is complex. The spectrum e(k, t) = 1

2
Φii is the energy

density in k-space, whereas h(k, t) = (−1/2)iklεlijΦij /k is the helicity spectrum and,
along with ζ , is zero in the isotropic case.

Anisotropy is expressed through variation of these scalars with the direction of k,
as well as departures of h and ζ from zero at a given wavenumber. Whatever spectral
closure is used, the number of real unknowns may be reduced to the above four
when carrying out numerical calculations, and the presentation of the results can be
simplified using these variables, particularly when the flow is axisymmetric.

In tensorial form, the contributions from e, ζ , h in (B 1) are rewritten as

Φij = e(k, t)Pij (k) + Re[ζ ∗(k, t)Ni(k)Nj (k)] + ih(k, t)εijn

kn

k
(B 2)

in which Pij = δij − kikj/k2 is the projector and N = e(2) − ie(1) using (A 3). The
anisotropic contributions are separated from the isotropic one in (B 2) as

Re
(
Φij

)
=

E(k)

4πk2
Pij︸ ︷︷ ︸

isotropic

+

(
e(k) − E(k)

4πk2

)
Pij︸ ︷︷ ︸

directional anisotropy

+ Re
(
ζ ∗(k, t)NiNj

)︸ ︷︷ ︸
polarization anisotropy

(B 3)

with a subsequent splitting of any second-order statistical quantity.

Appendix C. Integration in the vicinity of resonant surfaces
In the limit d = µkpq → 0, the integrand of (3.3) – likewise for (3.4) – comprises a

regular and a singular contribution which can be transformed into surface integrals
with some additional assumptions.

Considering a resonant surface given by the couple (s ′, s ′′), the integral is mainly
contributed to by wavevectors k which are close to the resonant surface, since the
integrand behaves as a Dirac function. One can therefore neglect the far wavevectors
contribution, and focus on a small volume Vε around the resonant surface Fs ′s ′′ =0,
with thickness 2ε. Figure 14 is a sketch of a piece of the resonant surface, and
of the local system of coordinates. We introduce the local curvilinear coordinates
(q1, q2) over the resonant surface, and complete them with a third coordinate ξ , which
represents the distance between a point in space close to the surface to the closest one
on the resonant surface. Positive values of ξ are along increasing F , and ξ is zero at
the surface. Each wavevector is associated with a point in space, so that p spans the
volume around the resonant surface, and k′ is the vector associated with the closest
point on the surface, consistently with the definition of ξ .

In the integrals (3.3) and (3.4), the non-singular terms gs ′s ′′( p) and As ′s ′′( p) are
slowly varying functions in the neighbourhood of the resonant surface, with respect
to the variations of d . They are therefore equated to their values at k′. On the other
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Vε

p = k′ + Ξ

Ξ

k′ dS

dξ or dF

Fs′s′′(k, k′, k′′) = 0
F = ξ = 0

(q1, q2)

ε

ε

Figure 14. General curvilinear coordinate system in the neighbourhood of a resonant
surface.

hand, Fs ′s ′′ is expanded in the direction orthogonal to the resonant surface, in order
to remove the singularity. The first-order Taylor expansion around k′ is

F ( p) = F (k′ + Ξ ) = F (k′) + Ξ · ∇F (k′). (C 1)

Higher-order terms correspond to higher-order resonance, and are neglected. Since
F (k′) = 0 and the gradient of F is parallel to Ξ , Ξ · ∇F (k′) = ξ

∣∣∇F (k′)
∣∣and

(C 1) becomes F ( p) = ξ |∇F (k′)|. Using the inertial wave group velocity C ,
another expression for the gradient is ∇F (k′) = s ′C(k′) − s ′′C(−k − k′), and yields
|∇F (k′)| = παs ′s ′′(k′, −k−k′), with αs ′s ′′(k′, k′′) = |s ′C(k′)−s ′′C(k′′)|/π. Finally, we obtain

F ( p) = παs ′s ′′(k′, −k − k′)ξ,

which is introduced in the volume integrals with the (dξ, dq1, dq2) parameterization
of the volume element. For (3.3) written in the coordinates (q1, q2, ξ ) with the element
of surface dS from dq1 and dq2 this yields∫

�3

g( p)
d

d2 + F ( p)2
Ass ′( p, t) d3 p

=

∫∫ [∫
d

d2 + π2αs ′s ′′ 2(k′, −k − k′)ξ 2
dξ

]
g(k′)Ass ′(k′, t) dS,

where the ξ integration is performed through the resonant surface. The corresponding
integrand goes to zero as ξ−2 when ξ → ∞, so that the integration is extended from
−∞ to ∞ rather than a neighbourhood of the resonant surface, and can be performed
analytically: ∫ +∞

−∞

d

d2 + π2α2ξ 2
dξ =

1

α
.
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We thus finally obtain surface integrals as the asymptotic approximations for the
coefficients

Bs(k, t) = −2
∑
s ′,s ′′

∫
Ss′s′′

gs ′s ′′

αs ′s ′′
Ass ′(k′, t) dS (C 2a)

= −2π
∑
s ′,s ′′

∫
�3

δ(Fs ′s ′′)gs ′s ′′Ass ′( p, t) d3 p, (C 2b)

Cs(k, t) = 2
∑
s ′s ′′

∫
Ss′s′′

γs ′s ′′

αs ′s ′′
Ass ′(k′, t)Ass ′′(k′′, t) dS (C 3a)

= 2π
∑
s ′s ′′

∫
�3

δ(Fs ′s ′′)γs ′s ′′Ass ′( p, t)Ass ′′(q, t) d3 p, (C 3b)

where Ss ′s ′′ is the resonant surface for the choice of parameters (k, s ′, s ′′) (see
equation (3.6)). Expressions (C 2b) and (C 3b) come from (3.3) and (3.4) in which
the functions involving µkpq have been replaced by Dirac functions of the resonant
surface, multiplied by π. Regarding D(k, t), the same procedure is applied to its real
part so that

D(k, t) = −
∑
s ′,s ′′

∫
Ss′s′′

gs ′s ′′

αs ′s ′′
e(k′, t) dS − i

∑
s ′,s ′′

∫
�3

gs ′s ′′
Fs ′s ′′

d2 + Fs ′s ′′
2
e( p, t) d3 p.

The imaginary part has to be treated differently, since the singularity cannot be
removed by merely letting d go to zero. One has to examine the separate contributions
of domains far from the resonant surface, and in its neighbourhood Vε:

Im[D(k, t)] = −
∑
s ′,s ′′

∫
�3\Vε

gs ′s ′′
Fs ′s ′′

d2 + Fs ′s ′′
2
e( p, t) d3 p

−
∑
s ′,s ′′

∫
Vε

gs ′s ′′
Fs ′s ′′

d2 + Fs ′s ′′
2
e( p, t) d3 p. (C 4)

Away from the resonant surface, i.e. removing Vε from the integration domain, given
ε, the asymptotic limit yields

lim
d→0

[
−

∑
s ′,s ′′

∫
�3\Vε

gs ′s ′′
Fs ′s ′′

d2 + Fs ′s ′′
2
e( p, t) d3 p

]
= −

∑
s ′,s ′′

∫
�3\Vε

gs ′s ′′

Fs ′s ′′
e( p, t) d3 p. (C 5)

Letting ε go to zero, this integral tends to the principal value integral over the entire
domain �3 denoted as

lim
ε→0

[
−

∑
s ′,s ′′

∫
�3\Vε

gs ′s ′′

Fs ′s ′′
e( p, t) d3 p

]
= −

∑
s ′,s ′′

−
∫

�3

gs ′s ′′

Fs ′s ′′
e( p, t) d3 p.

We now consider the integral over Vε in (C 4), when d → 0. In the curvilinear
coordinates (q1, q2, F ) the elementary volume is d3 p = J (q1, q2, F ) dq1 dq2 dF , where
J (q1, q2, F ) is the Jacobian of the coordinate transformation. We assume that
throughout Vε the functions are smooth enough to admit a Taylor expansion of
the form

gs ′s ′′(q1, q2, F )e(q1, q2, F )J (q1, q2, F ) =

+∞∑
i=0

αi(q1, q2)F
i,
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so that the second term of (C 4) becomes∑
s ′,s ′′

∫ +∞∑
i=0

αi(q1, q2)

[∫ F+

F−

F i+1

F 2 + d2
dF

]
dq1 dq2, (C 6)

The limits F+ and F− are functions of q1, q2 such that F+(q1, q2) and F−(q1, q2) are the
values of F respectively at (q1, q2, ε) and (q1, q2, −ε) in the local coordinates system
(q1, q2, ξ ).

If i � 1 the fraction in F is non-singular at vanishing d so that for this limit:∫ F+

F−

F i−1 dF =

[
F i

i

]F+

F−

=
F+

i − F−
i

i
. (C 7)

When i = 0 the integral is computed as∫ F+

F−

F

F 2 + d2
dF =

1

2

[
log

∣∣F 2 + d2
∣∣]F+

F−
=

1

2
log

∣∣∣∣F+
2 + d2

F−
2 + d2

∣∣∣∣,
prior to taking the limit d → 0:∫ F+

F−

F

F 2 + d2
dF → log

∣∣∣∣F+

F−

∣∣∣∣.
Equation (C 6) then becomes∑

s ′,s ′′

∫ [
+∞∑
i=1

αi(q1, q2)
F+

i − F−
i

i
+ α0(q1, q2) log

∣∣∣∣F+

F−

∣∣∣∣
]

dq1 dq2. (C 8)

Since F is zero on the surface, it admits a power series expansion in ξ in the
form of F (q1, q2, ξ ) =

∑+∞
i=1 F (i)(q1, q2)ξ

i , whence F−(q1, q2) =
∑+∞

i=1 F (i)(q1, q2)(−ε)i

and F+(q1, q2) =
∑+∞

i=1 F (i)(q1, q2)ε
i . This is used when taking the limit ε → 0 to show

that F− and F+ → 0 and |F+/F−| → 1, which proves that the integral (C 8) cancels
out at the limit.

The asymptotic imaginary part of D(k, t) is finally

Im[D(k, t)] = −
∑
s ′,s ′′

−
∫

�3

gs ′s ′′

Fs ′s ′′
e( p, t) d3 p,

yielding the asymptotic D(k, t) as equation (3.11).

Appendix D. Derivation of the geometrical factor gs ′s ′′

As proposed by e.g. Cambon (1982), Waleffe (1993) or Turner (1999), an optimal
factorisation of geometric coefficients is obtained by substituting into the local frame
defined from the helical mode decomposition (N(sk), N(s ′ p), N(s ′′q)) an alternative
one (W , W ′, W ′′) having its polar axis normal to the plane of the triad rather than to
the plane of rotation, such that

N(sk) = esiλ (β + isγ )︸ ︷︷ ︸
W (s)

, N(s ′ p) = es ′iλ′
(β ′ + is ′γ )︸ ︷︷ ︸

W ′(s ′)

, N(s ′′q) = es ′′iλ′′
(β ′′ + is ′′γ )︸ ︷︷ ︸

W ′′(s ′′)

(D 1)

in which γ is the unit vector normal to the plane of the triad, whereas β , β ′, β ′′ are
unit vectors normal to respectively k, p, q in the plane of the triad. Accordingly,
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scalar products in terms of k, p, q, W , W ′, W ′′, only depend on the moduli k, p and
q . Starting from

gs ′s ′′ = − 1
4
Pjlm(k)Nj (k)Nn(−k)Nl(s

′ p)Nk(−s ′ p)Prkn(q)Nm(s ′′q)Nr (−s ′′q)

one finds that terms like eiλ are multiplied by their conjugate, so that only the W
vectors remain. Therefore gs ′s ′′ may be expressed in terms of the k, p and q only as

gs ′s ′′(k, p, q) =
1

(4kpq)2
[(p + q)2 − k2][k2 − (p − q)2][s ′p − k][s ′p − s ′′q][k+ s ′p+ s ′′q]2

(D 2)

Not surprisingly, this geometric factor coincides with the one involved in
EDQNM2–3 when Z and h are ignored, which is gs ′s ′′ = −C2

kpqA1(k, s ′′q, s ′p)/4 with

Ckpq =sin ̂( p, q)/k = sin ̂(k, q)/p = sin ̂(k, p)/q and A1(k, p, q) = −(p − q)(k − q)(k +
p +q)2, according to equations (A3) to (A5) in the appendix of Cambon et al. (1997),

using (p + q)2 − k2 = 2pq[1 + cos ̂( p, q)] and k2 − (p − q)2 = 2pq[1 − cos ̂( p, q)].

Appendix E. Numerics and validation
E.1. Numerical method

In equation (4.1), the time derivative is estimated with a first-order forward time
scheme (∂te)(t) � (e(t) + �t) − e(t))/�t . The viscous term is centred in time and
computed as νk2(e(t) + e(t + �t)). The energy transfer term is estimated explicitly, i.e.
at time t from the known spectrum e(t).

As mentioned in § 4, the spatial discretization uses wavevectors normalized by
the base-wavenumber k, since all the triads with a given base-wavenumber polar
angle θ are homologous. The discrete wavenumbers are Kj = (kmin/k) exp(jερ) with
j ∈ {0, . . . , Mρ}, and the logarithmic step is computed from the limit wavenumbers:
ερ = log(kmax/kmin)/Mρ . The polar direction is discretized with θp = (p − 1/2)εθ where
p ∈ {1, . . . , Mθ} and εθ = π/Mθ , and we use the same discretization for the azimuthal
angles φn with n ∈ {1, . . . , Mφ}. These two angles theoretically evolve between 0 and
π, but numerically the smallest discretized angles are εφ/2 and εθ/2, and the largest
ones π − εφ/2 and π − εθ/2.

Once the discretization is chosen with Mρ , Mθ and Mφ , the numerical procedure
starts with selecting which grid boxes intersect the resonant surface, by computing
the characteristic function Fs ′s ′′ on the edges of the elementary volume. A change of
sign indicates that the resonant surface cuts through the elementary box, and one
computes the corresponding surface contribution by assuming the resonant surface
to be plane within the box. The projected area of this plane onto one side of the box
is first computed, and multiplied by the cosine of the projection angle to give the
actual elementary surface contribution.

In the dynamical equation (4.1), the base wavevectors k scan the discretized space
defined above, and within a given e(k) equation, the discretized p in the energy
transfer lie on the grid points. Thus the corresponding spectral energies e(k) and e( p)
are well-defined. This is not the case for e(q) which has to be interpolated over the
available discretized values, by a second-order interpolation scheme.

Every time q falls out of the discretized space, representing triadic interactions
with very small or very large wavenumbers, i.e. mainly non-local interactions, the
corresponding energy is neglected.
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E.2. Validation procedure

Before producing the definite results with a fixed set of computational parameters
presented in this paper, we have thoroughly investigated the dependence of our
numerical scheme on changes in the parameters. We have successively adopted two
points of view.

First, using the initial analytical spectrum proposed by Orszag (1969), with unit
peak wavenumber and energy (see the first spectrum of figure 4a), which yields the
energy-density spectrum e(k), we have compared the various transfer spectra T (k)
(right-hand side of equation (4.1)) obtained with different values of the numerical
discretization parameters Mρ , Mθ and Mφ . Starting with a given arbitrary choice
Mρ = Mθ = Mφ = 100, each of the parameters is gradually increased independently in
turn, until a comparison of the values of the two transfer spectra at coincident points
shows no significant change. (The difference is computed as ||T − Tref ||/||Tref || with a
suitable norm.) One then chooses the new value of the discretization parameter as the
reference, and a fresh batch of computations of T (k) is undertaken with this reference
set of parameters. This not only provides a means of evaluating the dependence of
the method’s accuracy on each parameter, but also permits choice of optimal values
in view of the computational cost. The influence of kmin and kmax is assessed in the
same way.

Three such series of tests have allowed us to move from the initial values to
Mρ = 200, Mθ =Mφ = 100, then to Mρ = 400, Mθ = 300 and Mφ = 200, and finally to
Mρ = 400, Mθ = 600 and Mφ = 200. The initial values 0.01 and 100 for the minimal
and maximal wavenumbers have been changed to 0.1 and 10 in the procedure. (All
the figures, and an extensive presentation of the method, are available in Bellet 2003.)

At the same time, the integral of each energy transfer over wave space is computed
to check how well energy conservation is satisfied for each run. The convergence with
increasing Mρ is plotted on figure 1.

The second point of view for the study of the numerical scheme concerns the time
dependent spectrum. The effective Reynolds number is first chosen to be Re =1, with
the same discretization parameters as above, and �t = 0.01, and the computation goes
to the final time tf =0.38. The influence of the time step is studied by decreasing the
initial value, and appears to be small, so this value is kept. Then, again, the influence
of the spatial resolution is studied in a series of non-stationary computations, with Mρ

increased up to 800, and Mθ to 900. (The influence of Mφ was shown in the previous
runs to be negligible once the chosen value 100 was reached.) In these runs, the round-
off errors and the radial cutoff at large wavenumbers are identified to be possible
sources of numerical problems in the large wavenumber range of the spectrum,
showing the necessity of a well-chosen kmax. (We have tested values of up to kmax = 60.)

For this reason, in view of the available computational resources, and in order
to be able to continue the final computation as long as possible in time, we have
only slightly increased the value of the effective Reynolds number to Re = 5 to take
advantage of the stabilizing role of viscosity at very small scale. The reference case
whose results are presented in this work also uses Mρ = 400, Mθ = 300, Mφ = 100,
kmin = 0.1, kmax = 60 and �t = 5 × 10−5. The run is performed from the initial time
t = 0 to tf =1.05.
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